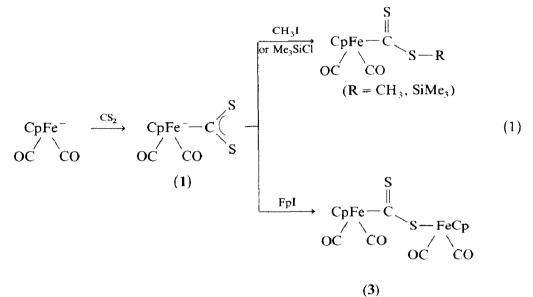
Reactions of carbon disulfide and carbon dioxide adducts $(\eta - C_5H_5)(CO)_2Fe-CX_2^-$ with organoiron electrophiles

Mary E. Giuseppetti-Dery, Bruce E. Landrum, John L. Shibley, and Alan R. Cutler * Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York, 12181-3590 (U.S.A.)

Abstract

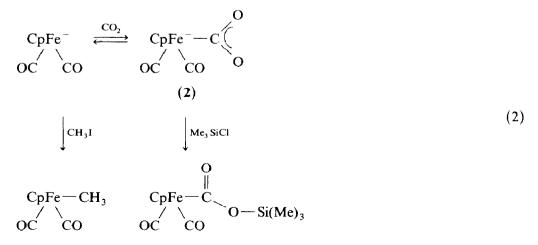
(Received July 23d, 1989)

Reactions of $FpCS_2^-K^+$ (1) and $FpCO_2^-Na^+$ (and Li^+) (2) ($Fp = (\eta^5 - \eta^5 - \eta^5)$ $C_{5}H_{5}(CO)_{2}Fe$ with organoiron electrophiles FpX (X = I, OSO₂CF₃, HgCl), (η^{5} - C_5H_5)L(CO)FeI (L = P(OPh_3), PPh_3), and $(\eta^5-C_5H_5)$ (CO)Fe(CH₃CN)⁺₂PF⁻₆ are contrasted. Treatment of the CS₂ adduct 1 with the bis-acetonitrile salt gives the $\mu(\eta^1-C: \eta^2-S,S')-CS$, complex FpC(S)SFe(CO)Cp, (4). Photolysis of the known $\mu(\eta^1-C:\eta^1-S)-CS_2$ compound FpC(S)SFp (3) only generates traces of 4, in contrast. Treating the CO₂ adduct 2 with the iron electrophiles Cp(L)(CO)FeI affords Fp_2 , with only trace amounts of FpFe(CO)(L)Cp (for $L = PPh_3$ and $P(OPh)_3$) evident. No $\mu(\eta^1$ -C:C η^1 -O) bimetallocarboxylate intermediates FpC(O)OFe(L)(CO)Cp are detected. In contrast, Fp^-Na^+ upon treatment with $(\eta^5-C_5H_5)L(CO)FeI$ gives 1/1mixtures of Fp_2 and FpFe(CO)(L)Cp (for $L = PPh_3$ and $P(OPh)_3$). The bisacetonitrile electrophile and 2 afford initially the mixed dimer FpFe(CH₃CN)(CO)-Cp, which degrades to Fp_2 at room temperature. Organic carboxylates $RCO_2^-M^+$ $(R = Ph, CH_2Ph, and t-Bu; M^+ = Li^+, Na^+, K^+)$ do not react with $(\eta^5 C_{s}H_{s}(CO)Fe(CH_{3}CN)_{2}^{+}$; and photolysis of Fp(acetate) produces only Fp₂, not an $(\eta^2 - 0.0')$ acetate complex $(\eta^5 - C_5 H_5)(CO)FeOC(O)CH_3$.

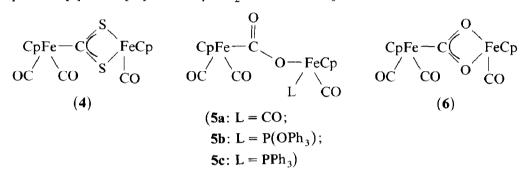

Introduction

Availability of analogous pairs of carbon dioxide [1] and carbon disulfide [2] transition-metal complexes permits comparing structure-bonding and chemical reactivity of these ligated heterocumulenes [3]. Such comparisons permit us to address the prevalent but questionable attitude that studying the generally more accessible CS_2 adducts affords insight into their less stable (or more labile) CO_2 congeners [4*]. We are interested in one pair of $(\eta^1$ -C)-bonded heterocumulene complexes, the Fe(CO)₂Cp metallodithiocarboxylates $FpCS_2^-$ (Na⁺,K⁺) (1) [5] and metallocar-

^{*} Reference number with asterisk indicates note in the list of references.


boxylates $FpCO_2^-(Li^+, Na^-)$ (2) [6] ($Fp = (\eta^5 - C_5H_5)(CO)_2Fe$). Although 1 and 2 are unstable at room temperature and have not been isolated as solids, both exhibit high reactivity in solution towards electrophiles [7].

The Fp(dithiocarboxylate) anion (1) in particular readily reacts with a variety of Lewis acids. Alkylation or silation of 1 at -20 °C gives stable dithiocarboxylate ester complexes (eq. 1) [5,8]. Ellis [5] initially demonstrated that treating 1 with FpI


affords the stable $\mu(\eta^1 - C : \eta^1 - S)$ bis-Fp-dithiocarboxylate 3 [8d,9c] in good yield. This μ -CS₂ adduct further serves as a useful precursor to trimetallic $\mu(\eta^1 - C : \eta^1 - S : \eta^1 - S')$ CS₂ derivatives. For example, electrophilic organoiron reagents that generate Fp⁺ convert 1 into FpC(SFp)₂⁺ [9a]. These results appear general in that a variety of stable bimetallic and trimetallic μ -CS₂ complexes derived from 1 have been characterized [9].

Reactions of the CO₂ complexes 2 with Lewis acids are more involved. Electrophilic methylating agents including methyl iodide and methyl triflate quantitatively convert 2 (Li⁺, Na⁺, or K⁺) to FpCH₃ [6,10,11], a result that is consistent with these electrophiles intercepting a dissociative equilibrium between 2 and Fp⁻ (eq. 2).

Blocking this dissociation of 2 by using the more oxophilic Mg^{2+} counterion, which evidently chelates 2 as a $\mu(\eta^1-C:\eta^2-O,O')$ metallocarboxylate [FpC(OO]₂Mg], expedites methylation of 2 to selectively give its metalloester FpCO₂CH₃ in good yield [10b]. As an alternative strategy, using oxophilic trialkylsilyl chlorides efficiently traps 2 (Li⁺ or Na⁺) as its silylesters FpC(O)OSiMe₂R (R = CH₃, t-Bu) [10c,12*]. The extremely robust FpSiMe₃ is not detected in these reactions. Results of treating 2 with transition organometallic Lewis acids have not been reported; indeed, few bimetallic μ -CO₂ adducts have been prepared [13*].

In this paper we compare the reactivity of 1 and 2 towards organoiron electrophiles. These electrophiles were selected so as to contain either one or two accessible coordination sites [14]; FpX (X = I, OSO₂CF₃) and Cp(CO)Fe(CH₃CN)⁺₂BF⁻₄, respectively, are representative Lewis acids. Target molecules are the μ -CS₂ complexes 3 [5] and 4 [9c] and the μ -CO₂ metallocarboxylates 5 and 6.

Experimental

Synthetic manipulations were performed under a nitrogen atmosphere using standard syringe-septum and Schlenk techniques or a glovebox [15]. Infrared spectra were taken of CH_2Cl_2 or THF solutions or of pressed KBr disks and were recorded on a Perkin-Elmer Model 297 spectrophotometer. The $\nu(CO)$ frequencies (2200-1500 cm⁻¹) were calibrated against the polystyrene 1601 cm⁻¹ absorption; they are accurate to ± 2 cm⁻¹ below and ± 5 cm⁻¹ above 2000 cm⁻¹. MR spectral data were obtained on a Varian Model XL-200 or a Bruker Model WP 100 spectrometer; chemical shifts (δ) are referenced to internal (CH₃)₄Si. Combustion microanalyses were done by Robertson Laboratory, Inc., Madison, NJ.

Organic reagents were obtained commercially and used as received. Dichloromethane was distilled under nitrogen from P_2O_5 ; anhydrous THF and diethyl ether were distilled from sodium benzophenone ketyl. Organometallic starting materials Fp_2 [16], $FpCH_3$ [16], FpI [16], FpHgCl [17], Fp^-K^+ [18], $Cp(CO)Fe(CH_3CN)_2^+PF_6^-$ [19], $Cp(PPh_3)(CO)FeI$ [20], and $Cp[P(OPh)_3](CO)FeI$ [21] were prepared by literature procedures and judged pure by IR and ¹H NMR spectroscopy.

Preparation of $Cp(CO)_2Fe-C(S)S-Fe(CO)_2Cp(3)$

The procedure of Ellis and coworkers [5] was followed. A THF solution of $Cp(CO)_2Fe^-Na^+$ (11.0 mmol, 150 ml), prepared by Na(Hg) cleavage of Fp₂ (2.00 g), was cooled to $-78^{\circ}C$ and treated with carbon disulfide (1.5 ml, 22.8 mmol). $Cp(CO)_2FeI$ (3.40 g, 11.2 mmol) then was added to the resulting dark red solution containing $Cp(CO)_2FeCS_2^-Na^+$ (1), and the reaction solution was maintained at

 -78° C (1 h). After warming (22° C), the solution next was filtered through celite; the THF was evaporated; and the dark red powder was recrystallized twice-from dichloromethane/heptane (-78° C). Yield 4.58 g (97%) FpC(S)SFp (3); IR (THF) 2038, 2021, 1990(sh), 1979(br) cm⁻¹ (CO); (CH₂Cl₂) 2040, 2025, 1994(sh), 1981(br) cm⁻¹ (CO), 1005 cm⁻¹ (CS); ¹H NMR (CDCl₃) δ 4.96 (CpFeS), 4.83 (CpFeC); ¹³C NMR (CDCl₃) δ 298.2 (FeCS₂Fe), 214.0 and 212.6 (CO), 87.9 and 85.8 (Cp).

Preparation of $Cp(CO)_2 Fe-C(S)S$ -Fe(CO)Cp (4)

In a glove box, FpK (0.496 g, 2.30 mmol) was transferred to a 250-ml side-arm flask. After removing from the glovebox, the flask was cooled (-78° C) before adding 100 ml of THF. The orange solution turned red-orange as carbon disulfide (0.28 ml, 2.53 mmol) was added dropwise by syringe, IR spectral monitoring of the cold, dark-red solution (5 min) indicated completed conversion to FpCS₂⁻K⁺ (1) (ν (CO) 1998, 1944 cm⁻¹) plus varying amounts of Fp₂ (2–10%). In separate experiments, warming this solution above -20° C exclusively affords Fp₂, {¹H}¹³C NMR spectra of 1-K⁺ in THF (-78° C): δ 308.9 (FeCS₂), 215.2 (CO), 88.0 (Cp).

The THF solution containing $\text{FpCS}_2^-\text{K}^+$ (1) was treated with $\text{Cp(CO)Fe(CH}_3\text{-CN})_2^+\text{PF}_6^-$ (0.950 g, 2.53 mmol) and maintained at $-78\,^{\circ}\text{C}$ (0.5 h). The resulting red-orange solution was warmed to room temperature before evaporating the solvent under reduced pressure and exhaustively extracting the residue with benzene (5 × 6 ml). Benzene was evaporated from the combined filtrates, and the resulting red solid was extracted with hexane. Flash column chromatography (silica gel, 4.5 × 15 cm column) of the combined red hexane extracts was used to separate the reaction mixture. Elution with 2% ethyl acetate in hexane removed faint yellow and brown bands; these afforded very small amounts of an unidentified material and Fp₂, respectively. A final red band was eluted using 4–6% ethyl acetate in hexane; removal of solvent left 0.291 g of a red powder that was identified as FpC(S)SFe(CO)Cp (4) [9c] (31%): IR (CH₂Cl₂) 2025, 1989, 1938(br) cm⁻¹ (CO); IR (KBr) 2028, 1980, 1913(br) (CO), 914, 875 cm⁻¹ (CS₂); ¹H NMR (CDCl₃) δ 4.85 (Cp, FpC), 4.54 (Cp, CS₂FeCp); {¹H}¹³C NMR (CDCl₃) δ 306.3 (FeCS₂Fe), 218.6 (CO, CpFe(CO)), 212.2 (CO, Fp), 82.2 (Cp), 79.7 (Cp).

Anal. Found: C, 41.66; H, 2.32. $C_{14}H_{10}Fe_2O_3S_2$ calcd.: C, 41.82, H, 2.53%.

Reaction between $FpCS_2^-Na^+$ (1-Na⁺) and $Cp(CO)Fe(CH_3CN)_2^+PF_6^-$ under otherwise identical conditions affords complex mixtures. These were not adequately separated by column chromatography; ¹H NMR spectral analysis of the crude reaction mixture indicated the presence of 6–10 CpFe singlets (δ 5.2–4.50) of comparable intensities.

Reaction of $Cp(CO)_2FeCO_2^-Na^+$ (2) and $Cp(CO)_2FeI$

Carbon dioxide (12.0 ml, 0.50 mmol) was introduced slowly by syringe into a THF solution of Fp^-Na^+ (0.30 mmol, 4.5 ml) that was maintained at $-78\,^{\circ}$ C. The resulting yellow-brown solution of $\text{FpCO}_2^-\text{Na}^+$ (2) [11e] (IR after 2 min: ν (CO) 2000, 1945 cm⁻¹) was treated with FpI (90 mg, 0.30 mmol). A red-brown solution was evident immediately; IR spectral monitoring within one minute of the cold solution indicated quantitatively conversion to Fp_2 : ν (CO) 1993, 1953, 1782 cm⁻¹. The solution was warmed to room temperature; the solvent was evaporated under reduced pressure; and the residue was extracted with 3×5 ml portions of diethyl ether. These combined ether extracts were passed through a 2 cm pad of alumina,

which was further eluted with ether. The resulting purple filtrate was evaporated to leave 47 mg of purple brown crystals, for which the ¹H NMR spectrum indicated pure Fp_2 (89% yield).

Reaction of Cp(CO), $FeCO_2^-Li^+$ (2) and $Cp(CO)_2FeOSO_2CF_3$

Fp(triflate) was prepared by adding HOSO₂CF₃ (0.29 ml, 3.25 mmol) over a 1min period to a dichloromethane solution (30 ml) of FpCH₃ (0.625 g, 3.25 mmol). Reaction was instantaneous, as indicated by vigorous gas evolution; IR spectral monitoring was consistent with FpCH₃ quantitatively converting to FpOSO₂CF₃: ν (CO) 2078, 2032 cm⁻¹. The product was crystallized from a mixture of dichloromethane (7 ml) and 1/1 ether/hexane (30 ml) with scratching: 629 mg of dark purple crystals that were spectroscopically identified as FpOSO₂CF₃ [22] ¹H NMR (CDCl₃) δ 5.04 (Cp).

Fp(triflate) (400 mg, 1.20 mmol) was added to a THF solution of $FpCO_2^-Li^+$ (2), which was generated by adding CO_2 (33 ml, 1.50 mmol) to FpLi (15.0 ml, 1.00 mmol) at -78 °C [10c]. IR spectral analysis of the resulting cold, red-brown solution established complete conversion to Fp₂, which was isolated after column chromatography on activity 3 alumina (168 mg, 94% yield).

Reaction of $Cp(CO)_2FeCO_2^-Li^+$ (2) and $Cp(CO)_2FeHgCl$

A THF solution of Fp^-Li^+ (1.00 mmol, 15 ml) was converted to $\text{FpCO}_2^-\text{Li}^+$ (2) using CO₂ (33 ml, 1.5 mmol) at -78° C and then was treated with FpHgCl (0.412 g, 1.00 mmol). IR spectral monitoring of the resulting orange-brown solution that immediately formed was consistent with quantitative conversion of 2 to Fp₂Hg: IR 1985, 1959, 1925 cm⁻¹. Less than 5% of Fp₂ was detected by the presence of its bridging carbonyl ν (CO) at 1785 cm⁻¹. The solution was warmed to room temperature before evaporating the solvent and exhaustively extracting the residue with ether (4 × 6 ml). Combined extracts were concentrated to give orange-brown crystals (0.489 g) that were identified as spectroscopically pure Fp₂Hg [23] (90%): ¹H NMR (CDCl₃) δ 4.70 (Cp), vs. δ 4.95 (Cp) for FpHgCl and δ 4.78 (Cp) for Fp₂.

Reaction of $Cp(CO)_2FeCO_2^-Na^+$ (2) with $Cp[P(OPh)_3](CO)FeI$

A solution of Fp^-Na^+ in THF (1.00 mmol, 15.0 ml) was converted into $FpCO_2^-Na^+$ (2) at $-78^{\circ}C$ and then treated with $Cp(PCOPh)_3(CO)FeI$ (586 mg, 1.00 mmol). IR spectral monitoring of the cold, red-brown solution was consistent with immediate conversion of 2 to Fp_2 , as judged by the intensity of its bridging carbonyl $\nu(CO)$ at 1784 cm⁻¹. A weak absorption, $\nu(CO)$ 1757 cm⁻¹, was tentatively assigned to the mixed dimer $Cp_2Fe_2(CO)_3[P(OPh)_3]$ [24a] which however would be present only in low concentration (< 15%). No further transformations occurred as established by IR spectral monitoring at room temperature. ³¹P NMR spectra of the reaction mixture had major absorptions at δ 182.4 { $Cp_2Fe_2(CO)_3[P(OPh)_3]$ } and at δ 168.4 { $Cp[P(OPh)_3](CO)FeI$ }.

The crude reaction product was chromatographed on activity 3 alumina (neutral), eluting with 10–20% dichloromethane in hexane. Much decomposition was noted at the top of the column. A reddish purple band was eluted using 10% CH_2Cl_2 ; and a green band was removed using 15–20% CH_2Cl_2 , with no other bands detected. The first band afforded spectroscopically pure Fp_2 (101 mg, 58% yield); the second band left 141 mg of $Cp[P(OPh)_3](CO)FeI$ as a green solid (24% recovery): IR (THF) 1981

cm⁻¹; ¹H NMR (CDCl₃) δ 7.28 (m, OPh), 4.21 (s, Cp); ³¹P NMR (CDCl₃) δ 171.8.

As a control reaction, a THF solution of Fp^-Na^+ (3.0 ml, 0.18 mmol) was cooled to -78° C and treated with $Cp[P(OPh)_3](CO)FeI$ (110 mg, 0.19 mmol). IR spectral monitoring of the cold, red-brown solution was consistent with the presence of both Fp_2 and $Cp_2Fe_2(CO)_3[P(OPh)_3]$ [24] ($\nu(CO)$ 1992, 1954, 1784, 1757 cm⁻¹), although the proportion of Fp_2 to the mixed dimer increased with time: 3/2 (1 min), 1/1 (10 min), 1/1.2 (20 min at 0°C to 1 h at 22°C). Column chromatography of the residue on silica gel (2/1 to 1/1 hexane/benzene) or on activity 3 alumina (neutral) (5% ethyl acetate/hexane or 10% dichloromethane/hexane) did not adequately resolve the two red-brown bands. These were collected as one fraction, which afforded a dark red solid (58 mg) as a 1/1.2 mixture of Fp_2 and $Cp_2Fe_2(CO)_3[P(OPh)_3]$: ¹H NMR (CDCl₃) δ 4.80 and 4.08 (s, Cp, mixed dimer), 4.78 (s, Cp, Fp₂).

Reaction of $Cp(CO)_2 FeCO_2^- Na^+$ (2) and $Cp(CO)Fe(CH_3CN)_2^+ PF_6^-$

A solution of Fp^-Na^+ in THF (1.0 mmol, 15.0 ml) was converted to a yellow-brown solution of $FpCO_2^-Na^+$ (2) at -78° C, to which $Cp(CO)Fe(CH_3-CN)_2^+PF_6^-$ (376 mg, 1.00 mmol) was added. The clear purple solution that resulted was examined by IR spectroscopy. Three products were immediately detected as a 2/1/1 mixture of Fp_2 ($\nu(CO)$ 1993, 1952, 1785 cm⁻¹), FpH [10a,25] ($\nu(CO)$ 2017, 1952 cm⁻¹), and an unidentified material ($\nu(CO)$ 1993, 1952, 1756 cm⁻¹). IR spectra of this purple solution after sitting at 22°C (20 min) indicated only the presence of Fp_2 : its concentration had increased at the expense of the other two components. Ether extracts of the crude reaction mixture were chromatographed on alumina, from which a single red-brown band was eluted with ether. This afforded 285 mg of reddish purple crystals of spectroscopically pure Fp_2 (0.81 mmol). Considerable amounts of brown decomposition residues also were evident at the top of the column.

Results and discussion

Reactions of $FpCS_2^-$ (1)

We repeated Ellis' synthesis of FpC(S)SFp (3) (eq. 1) as a control for subsequent reactions of FpCS_2^- (1) and of FpCO_2^- (2) with organoiron electrophiles. As reported [5], the reaction of 1 and FpI affords the stable $\mu(\eta^1\text{-}\text{C}: \eta^1\text{-}\text{S})$ CS₂ adduct 3 in essentially quantitative yield. Table 1 contains ¹³C NMR spectral data for 1 and 3, as well as for related CS₂ and CO₂-containing complexes.

The difference in chemical shifts for molecular CS_2 and CO_2 resembles the downfield trend that sp^2 carbons of organic thiones exhibit as compared to their carbonyl analogues. This downfield shift represents greater paramagnetic shielding for the carbon center of the CS double bond [26], a shift that also occurs for the metalloester FpC(O)OCH₃ and metallodithioester FpC(S)SCH₂Ph compounds tabulated. Data for this dithio-ester complex also are similar to that of FpC(S)SFp (3).

Upon coordinating Fp^- , CO_2 and CS_2 exhibit 70 and 116 ppm downfield shifts, respectively (Table 1). The resulting (η^1 -C) metallodithiocarboxylate 1 and metallocarboxylate 2 structures are consistent with IR spectral data (which preclude other reasonable structures [7]) and with theoretical arguments (for 1 [2a]). The chemical

	δ (CDCl ₃)	Reference
0=C=0	132.0	[26]
S=C=S	192.5	[26]
$S=C=S$ $CpFe^{-}-C(U_{Li}^{+})$ $O(U_{CO}^{-})$ $O(U_{CO}^{-})$	217.0	[10c] ^a
(2) $CpFe^{-}-C\langle SK^{+} \\ OC CO SK^{+} $ (1)	308.9	this work ^{<i>a</i>}
O CpFe−C OC CO O−CH ₃	213.3	[10c]
CpFe-C OC CO S-CH ₂ Ph	287.6	this work ^b
$\begin{array}{c} OCH_{3} \\ CpFe-C(+ PF_{6}^{-} \\ OC OCH_{3} \end{array}$	251.9	[40*]
$CpFe-C(+) PF_{6}^{-}$	304.3	[40 *]
$ \begin{array}{c} S \\ \Box \\ CpFe-C \\ OC \\ OC \\ OC \\ OC \\ (3) \end{array} $	298.2	this work
$CpFe-C \begin{cases} S \\ FeCp \\ OC \\ CO \\ (4) \end{cases} FeCp$	306.3	this work

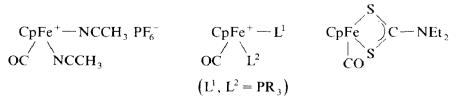
Table 1 ¹³C NMR spectral assignments (δ)

^{*a*} Recorded in THF (-78° C). ^{*b*} This work, compound prepared according to Angelici's procedure [8c], other absorptions: δ 213.4 (CO), 137.1, 129.9, 129.3, 127.8 (Ph), 88.2 (Cp), 46.8 (CH₂).

shifts for the heterocumulene centers on 1 and 2 indicate the extent of carbon hybridization and of charge delocalization involving the heteroatoms. Corresponding dimethoxycarbene and dithiomethoxycarbene compounds $[FpC(XCH_3)_2]^+$ (X = O, S), which have considerable charge delocalization, also display downfield shifts of their carbon centers.

The ¹³C NMR spectral data for 1 also compares with that of the anionic tungsten CO_2 adduct $(CO)_5WCO_2^{2-}$, δ 223.4 in THF. Cooper [4a] demonstrated that NMR and IR spectral data support a superposition of the resonance structures for this adduct:

$$(CO)_{5}W^{-}-C\left(\begin{array}{c}O\\-\\O\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O\\-\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O_{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O^{-}\\O^{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O^{-}\\O^{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O^{-}\\O^{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\\\O^{-}\\O^{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\O^{-}\\O^{-}\\O^{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\O^{-}\\O^{-}\\O^{-}\\O^{-}\\O^{-}\end{array}\right)_{5}W=C\left(\begin{array}{c}O^{-}\\O^{O$$


The IR spectrum resembles those of anionic pseudohalide complexes, e.g., $(CO)_5WOC(O)CH_3^-$, in which the charge localizes on the $W(CO)_5$ moiety. The magnitude of the coupling constant J(W-C) for the CO_2 center on $(CO)_5WCO_2^{2^-}$ indicates extensive W=C double bonding, thus favoring charge localization on the oxygens.

The bis-iron μ -(η^1 -C: η^2 -S,S') CS₂ complex, FpC(S)SFe(CO)Cp (4), because of the presence of its chelating dithiocarboxylate structure, served as a synthetic objective. Busetto and coworkers [9] demonstrated the thermodynamic stability that is associated with such chelating ligands; for example, FpC(S)SMn(CO)₅ spontaneously transforms into its chelated derivative FpC(S)SMn(CO)₄ [9b]. We prepared 4, a known compound [9c] vide infra, from the reaction between FpCS₂⁻ (1) and an appropriate organoiron electrophile. This methodology then would be extended to synthesizing the congeneric μ -CO₂ compound 5. (Most of the known bimetallic and trimetallic CO₂ complexes retain analogous chelated metallocarboxylate structures [13*].)

We selected $Cp(CO)Fe(CH_3CN)_2^+ PF_6^-$ [19] as the organometallic Lewis acid of choice [14], one that bears two accessible coordination sites, to convert the CS_2 complex 1 to 4 (eq. 3). In previous studies, we documented that this labile bis-acetonitrile complex readily exchanges its ligated acetonitrile for a variety of

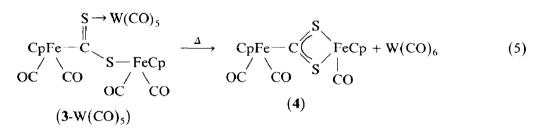
$$CpFe^{-}-C \begin{pmatrix} S \\ + CpFe^{+}-NCCH_{3} \longrightarrow CpFe^{-}C \\ S & OC & NCCH_{3} \end{pmatrix} \xrightarrow{CpFe^{-}C & FeCp} (3)$$
(1)
(4)

phosphines and phosphites in dichloromethane [19b], an exchange that can be carried out stepwise in order to bind two different phosphorus-donor ligands. A particularly relevant observation [19b] is that the room-temperature reaction between Cp(CO)Fe(CH₃CN)⁺₂PF⁻₆ and Et₂NCS⁻₂Na⁺ in THF selectively affords the $(\eta^2$ -S,S') chelate Cp(CO)FeSC(S)NEt₂ (73% yield) that is uncontaminated by the Fp $(\eta^1$ -S) dithiocarbamate Cp(CO)₂FeSC(S)NEt₂.

Treatment of the same labile bis-acetonitrile salt with $FpCS_2^-K^+$ (1) in THF (-78°C) gives the desired $\mu(\eta^1-C:\eta^2-S,S')$ dithiocarboxylate 4 in moderate yield.

The actual yield corresponding to 4 isolated by column chromatography, however, varied between 21 and 45% in six experiments.

Near insolubility of the bis-acetonitrile iron reagent, particularly at lower temperatures, could account for the moderate yields observed. A sluggish reaction (eq. 3), whatever the cause, expedites deleterious side reactions that are attributed to decomposition of 1 (above -20° C) and of Cp(CO)Fe(CH₃CN)₂⁺ PF₆⁻ in THF. We previously noted that this bis-acetonitrile salt degrades in THF (as a suspension at room temperature) to an intermediate that has been formulated as Cp(CO)(THF)Fe(CH₃CN)⁺, which then rapidly decomposes to insoluble residues [19b].

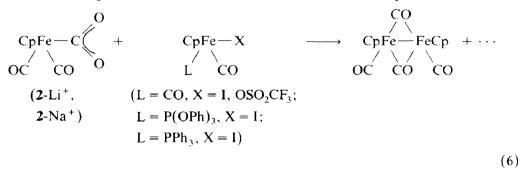

IR and ¹H NMR spectral data for the stable red solid resulting from the reaction of $FpCS_2^-K^+$ (1) and $Cp(CO)Fe(CH_3CN)_2^+$ matches that previously reported for 4 [9c]. The presence of three carbonyl stretching frequencies (2025, 1989 cm⁻¹ for Fp, and 1938 cm⁻¹ for Cp(CO)Fe) and of the expected [9] two thiocarboxylate $\nu(CS_2)$ absorptions (914, 875 cm⁻¹) for chelating dithiocarboxylate are particularly diagnostic. These absorptions closely correspond to similar values reported for the thiocarbonyl analogue 7 (eq. 4): $\nu(CO)$ 2030, 1987 cm⁻¹; $\nu(CS_2)$ 913, 880 cm⁻¹. Our ¹³C NMR spectral data for 4 resembles that of 6 [27*] and of [FpC(SFp)(SCH₃)]⁺ [8d], with their corresponding Fp-bound dithiocarboxylate carbons producing signals at δ 306, 329, and 315, respectively.

$$CpFe - C \xrightarrow{S} C \not = S \xrightarrow{h\nu} CpFe - C \xrightarrow{S} FeCp \qquad (4)$$

$$OC \xrightarrow{CO} CO \xrightarrow{I} OC \xrightarrow{CO} OC \xrightarrow{CO} CO \xrightarrow{S} CS$$

$$(6) \qquad (7)$$

Busetto and coworkers [9c] previously obtained 4 from the thermal decomposition of the $W(CO)_5$ -adduct of 3 (eq. 5). Under the relatively mild conditions of this reaction (refluxing dichloromethane, 40 ° C), $W(CO)_5$ -3 affords 4 in 70% yield. In contrast, thermolysis of FpC(S)SFp (3) requires refluxing octane (126 ° C) before extruding CS₂ and leaving Fp₂.



Photolysis of 3 also is reported to give 4 in 17% yield [9c]. We repeated this photolysis in benzene and in THF $(+5^{\circ}C)$ using both a Rayonet photochemical reactor (λ 3550 Å) and a Hanovia medium-pressure mercury-vapor lamp. In all cases starting material was consumed, but isolated yields of 4 after column chromatography uniformly were less than 10%. Dimeric Fp₂ appears as the other major isolated product (less than 10% yield); other decomposition products do not elute from silica gel chromatography columns.

Reactions of $FpCO_2^-$ (2)

Bis-iron $\mu(\eta^1-C; \eta^1-O)CO_2$ complexes **5a**-**5c** offer plausible synthetic objectives in view of the thermal stability of the CS₂ congener **3**. Complex **5a** should retain (η^1-C) and (η^1-O) bonding analogous to that found in the stable methyl ester. Fp(C(O)OCH₃ [10b], and acetate, FpOC(O)CH₃ [28], complexes.

Our synthetic approach involves treating THF solutions of $FpCO_2^-$ (2-Na⁺ and 2-Li⁺) at -78° C with the organoiron electrophiles (eq. 6) and then immediately monitoring the cold solutions by IR spectroscopy, with particular attention accorded to the 1600–1650 cm⁻¹ region [29*]. Initial IR data typically were recorded within 2 min of mixing 2 and the iron Lewis acid and at an IR cell temperature of ca. 0°C.

Treatment of $FpCO_2^-$ (2-Li⁺, 2-Na⁺) with either FpI or Fp(triflate) at $-78^{\circ}C$ immediately and quantitatively affords Fp_2 . Attempts to use $Fp(THF)^+BF_4^-$ [32] as the organoiron electrophile were thwarted by its insolubility in THF at $-78^{\circ}C$. After treatment with 2-Li⁺ (0.50 mmol scale) for 10 minutes and filtering the cold suspension, we recovered 94% of the starting $Fp(THF)^+$ salt. An IR spectrum of the supernatant solution indicated quantitative conversion of 1-Li⁺ to Fp_2 . The ironmercury electrophile FpHgCl [33] also readily reacts with $FpCO_2^-Li^+$ (2), but Fp_2Hg immediately and quantitatively forms in preference to an $Fp(\eta^2-OO')(car$ $boxylate)-Hg^{II}$ derivative.

The reaction between 2-Li⁺ or 2-Na⁺ and Cp[P(OPh)₃](CO)FeI likewise produces Fp₂ as the predominant organometallic species, although small amounts (10%) of the phosphite-substituted dimer $Cp_2Fe_2(CO)_3[P(OPh)_3]$ (8) [24a] also forms. Concentrations of this mixed dimer, estimated by IR spectral monitoring, did not change during the course of the reaction, 2 min (-78°C) to 1 h (+22°C). ³¹P NMR spectra of the crude reaction mixture at room temperature established the presence of this dimer as well as the starting iron-iodide complex.

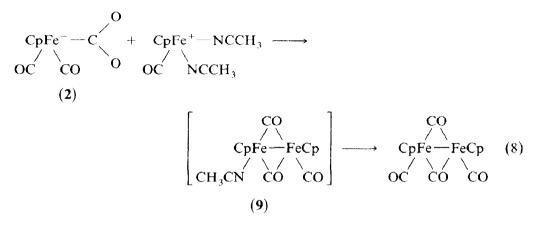
Reaction between Fp^-Na^+ and $Cp[P(OPh)_3](CO)FeI$ under otherwise identical conditions gives different results (eq. 7). Substantial amounts of phosphite-substituted dimer 8 along with Fp_2 are evident even in the early stages of the reaction. The concentration of $Cp_2Fe_2(CO)_3[P(OPh)_3]$ (8) increases with time at the expense of Fp_2 , so that at room temperature (1 h elapsed time) a final 1/1.2 mixture of Fp_2 to 8 prevails.

$$\begin{array}{cccc} CpFe^{-}Na^{+} + & CpFe^{-}I \longrightarrow \\ OC & CO & (PhO)_{3}P & CO \end{array}$$

$$\begin{array}{cccc} CO & & CO \\ CpFe^{-}FeCp + & CpFe^{-}FeCp & (7) \\ OC & CO & CO & (PhO)_{3}P & CO & CO \end{array}$$

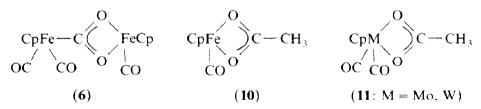
$$\begin{array}{cccc} (8) \end{array}$$

A straightforward coupling of the two iron centers does not occur upon treating Fp^-Na^+ with $Cp[P(OPh)_3](CO)FeI$ (eq. 7), since approximately 50% of the reaction product is Fp_2 . Of the $Cp_2Fe_2(CO)_3[P(OPh)_3]$ (8) that does form, at least 16% (and quite possible more) of it derives from the Fp_2 . This mixed dimer 8 apparently doesn't result from Fp^- promoting CO displacement on Fp_2 , since treating $Fp_2/P(OPh)_3$ mixtures (1/2) with 0.10 or 1.0 molar equivalents of Fp^-Na^+ in THF (-20°C) does not give any detectable 8. Others previously noted that Fp_2 is thermally unreactive towards phosphines and phosphites at room temperature [24].

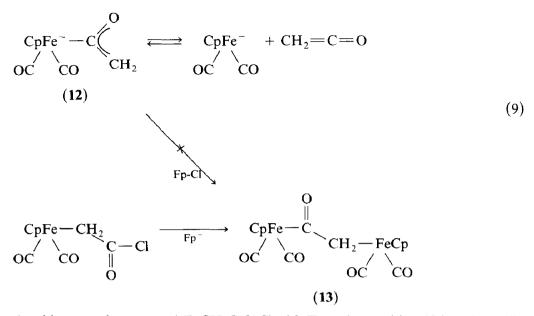

Treating metallocarboxylate $FpCO_2^-Na^+$ (2) with $Cp[P(OPh)_3](CO)FeI$ (eq. 6) produces very little $Cp_2Fe_2(CO)_3[P(OPh)_3]$ (8) even though it is stable under the experimental conditions. Isolation of Fp_2 as the major product is consistent with 2 interacting with the iron iodide by an electron-transfer process that ultimately affords 17-electron intermediates $Cp(L)(CO)Fe \cdot (L = CO, P(OPh)_3)$. Others have established that these substituted odd-electron species (e.g., $L = P(OPh)_3$), which remain after ligand dissociation from 19-electron intermediates $Cp(L)(CO)FeX^-$ or $Cp(L)(CO)_2Fe^+$ [34], preferentially give unsubstituted dimer Fp_2 [12a*,35]. The main observation is that $FpCO_2^-$ (1) does not dissociate CO_2 and reacts as Fp^- with $Cp[P(OPh)_3](CO)FeI$, although further mechanistic studies clearly are needed.

This electron transfer process also accounts for the Fp_2 product that results from treating $FpCO_2^-Na^+$ (2) with FpI or Fp(triflate). Electron transfer affords odd-electron transient species FpX^{-} and $(FpCO_2)^{-}$ that degrade to the 17-electron Fp', which dimerizes. Lee and Cooper [11b] advanced a similar mechanism to account for their observation that $FpCO_2^-Li^+$ (2) reacts with $FpCO^+BF_4^-$ to give exclusively Fp_2 .

Reactions between the triphenylphosphine-substituted iron iodide, $Cp(PPh_3)$ (CO)FeI, and $FpCO_2^-Na^+$ (2) or Fp^-Na^+ afford results that are very similar to those observed for the phosphite-containing analogue $Cp[P(OPh)_3](CO)FeI$, as ascertained by IR spectral monitoring. The documented thermal instability of the mixed dimer $Cp_2Fe_2(CO)_3(PPh_3)$ at room temperature [24b] precluded further analysis or workup of these reactions, however.


Treatment of the labile bis-acetonitrile salt $Cp(CO)Fe(CH_3CN)_2^+PF_6^-$ with $FpCO_2^-Na^+$ (2) (eq. 8) initially generates a complex mixture of Fp_2 , FpH [10b,25],

and a new component having a bridging carbonyl ν (CO) 1756 cm⁻¹ (eq. 8). Upon warming this mixture to room temperature, only Fp₂ is evident during IR spectral monitoring (isolated yield 41%).


We formulate the new component as the mono-acetonitrile adduct of Fp₂: $Cp_2Fe_2(CO)_3(CH_3CN)$ (9). Related dimers $Cp_2Fe_2(CO)_3[P(OPh)_3]$ (8) and $Cp_2Fe_2(CO)_3PPh_3$ likewise exhibit lower energy bridging carbonyl $\nu(CO)$ at 1757 and 1733 cm⁻¹ (with respect to Fp₂, $\nu(CO)$ 1782 cm⁻¹, also in THF). Labinger [36] previously prepared 9 by photolysis of Fp₂ in acetonitrile and documented its solution instability.

Our inability to generate the chelating bis-iron $\mu(\eta^1-C: \eta^2-O,O')-CO_2$ complex 6 raised the question: could analogous chelating organic carboxylate complexes 10 be prepared? Werner [37] reported that corresponding molybdenum and tungsten acetate chelates 11 are the stable products of warming the (η^1-O) acetates Cp(CO)₃MOC(O)CH₃.

We found that the bis-acetonitrile salt $Cp(CO)Fe(CH_3CN)_2^+PF_6^-$ is inert to the carboxylate salts $PhCO_2^-Li^+$, $Me_3CCO_2^-Li^+$, $PhCH_2CO_2^-Li^-$ and $PhCO_2^-Na^+$ in THF solution. These carboxylates remain unchanged (IR spectral monitoring of $\nu(CO_2)$ region 1550 to 1620 cm⁻¹) as the iron-acetonitrile complex degrades (1 h. 20 °C) to insoluble residues. Attempts to prepare the chelating acetate complex 10 (R = CH₃) by photolysis of FpOC(O)CH₃ also failed. Irradiation (Rayonet Reactor, 3500 Å) in either benzene or THF solution (10 °C) degraded Fp acetate to Fp₂ and insoluble residues.

Reaction chemistry of $FpCO_2^-$ (2) resembles that of the (η^1-C) ketene complex $Fp(CH_2CO)^-$ (12). Helquist [38] first generated this heterocumulene adduct by deprotonating $FpCOCH_3$ at low temperature, and Akitah and coworkers [30] demonstrated that 12 equilibrates with Fp^- and free ketene above $-50^{\circ}C$. Attempts to intercept 12 with FpCl and generate $FpC(O)CH_2$ -Fp (13) produced only Fp_2 (eq. 9). The desired μ -ketene compound 13 does form, however, by metallating

the chloroacetyl compound $FpCH_2C(O)Cl$ with Fp^- ; the resulting 13 is a thermally stable molecule that only extrudes ketene after photolysis. Our inability to generate μ -CO₂ compounds 5 and 6 likewise may not be due to their thermodynamic instability, but may indicate a need to alter the synthetic approach.

Conclusions

We did not convert the metallocarboxylate $FpCO_2^{-}$ (2) to bimetallic CO₂ adducts FpC(O)OFp (5a) or FpC(O)OFe(CO)Cp (6) under conditions that the corresponding μ -CS₂ adducts 3 and 4, respectively, readily form using $FpCS_2^{-}$ (1). Either 5 or 6 could have been transient intermediates that quickly degraded, perhaps by a pathway involving odd-electron organometallic intermediates. We disfavor this explanation because there is no apparent reason why 5 and 6, once formed, should be less stable than their CS₂ congeners or even the μ -ketene compound $FpC(O)CH_2Fp$ (13) [39*]. A more plausible interpretation of our results is that $FpCO_2^{-}$ (2) reacts with the organoiron electrophiles by an alternative pathway not involving either prior dissociation of CO₂ or coupling of 2 and the metal Lewis acid.

Acknowledgment

Support from the Office of Naval Research and from the National Science Foundation, Grant CHE-8305484, is gratefully acknowledged.

References

(a) D. Walther, Coord. Chem. Rev., 79 (1987) 135; (b) D.J. Darensbourg and R.A. Kudaroski, Adv. Organomet. Chem., 22 (1983) 129; (c) A. Behr in W. Keim (Ed.), Catalysis in C₁ Chemistry; D. Reidel Publishers, Boston, 1983, p. 169; (d) T. Ito and A. Yamamoto in S. Inoue and N. Yamazaki (Eds.), Organic and Bio-Organic Chemistry of Carbon Dioxide; Wiley, New York, 1982, Chapter 3; (e) R.P.A. Sneedon in G. Wilkinson, F.G.A. Stone and F.W. Abel (Eds.), Comprehensive Organometallic Chemistry; Vol. 8; Pergamon, New York, 1982; Chapter 50.4.

- 2 (a) C. Bianchini, C. Mealli, A. Meli and M. Sabat in I. Bernal (Ed.), Stereochemistry of Organometallic and Inorganic Compounds; Elsevier, New York, 1986, Chapter 3: (b) J.A. Ibers, Chem. Soc. Rev., 11 (1982) 57; (c) H. Werner, Coord, Chem. Rev., 43 (1982) 165.
- 3 Theoretical studies stressing coordination of CO₂ and CS₂ to transition organometallic fragments: (a) S. Sakaki, K. Kitaura and K. Morokuma, Inorg. Chem., 21 (1982) 760; (b) C. Meali, R. Hoffmann and A. Stockis, Inorg. Chem., 23 (1984) 56; (c) T. Ziegler, Inorg. Chem., 25 (1986) 2721; (d) M. Rosi, A. Sgamellotti, F. Tarantelli and C. Floriani, Inorg. Chem., 26 (1987) 3805; J. Organomet. Chem., 332 (1987) 153.
- 4 Complementary pairs of CO₂/CS₂ transition organometallic complexes that have been studied include. (a) (CO)₅W(CX₂)²⁻: G.R. Lee, J.M. Maher and N.J. Cooper, J. Am. Chem. Soc., 109 (1987) 2956; (b) Cp₂(PMe₃)Ti(CX₂): H.G. Alt, K.-H. Schwind and M.D. Rausch, J. Organomet. Chem., 321 (1987) C9: (c) N(CH₂CH₂PPh₂)₃Co(CX₂)^{q-*} (q=0, X = S; q=1, X = O): C. Bianchini and A. Meli, J. Am. Chem. Soc., 106 (1984) 2698; C. Bianchini, A. Meli and G. Scapacci, Organometallics, 2 (1983) 1834.
- 5 J.E. Ellis, R.W. Fennel and E.A. Flom, Inorg. Chem., 15 (1976) 2031.
- 6 G.O. Evans, W.F. Walter, D.R. Mills and C.A. Streit, J. Organomet. Chem., 144 (1987) C34.
- 7 A.R. Cutler, P.K. Hanna and J.C. Vites, Chem. Rev., 88 (1988) 1363.
- 8 (a) L. Busetto, U. Belluco and R.J. Angelici, J. Organomet. Chem., 18 (1969) 213; B.D. Dombek, R.J. Angelici, I.S. Butler and D. Cozak, Inorg. Synth., 17 (1977) 100; (b) T.A. Wnuk and R.J. Angelici, Inorg. Chem., 16 (1977) 1173; (c) F.B. McCormick and R.J. Angelici, Inorg. Chem., 18 (1979) 1231; (d) H. Stolzenberg, W.P. Fehlhammer, M. Monari V. Zanotti and L. Busetto, J. Organomet. Chem., 272 (1984) 73; (e) R.J. Angelici and J.W. Dunker. Inorg. Chem., 24 (1985) 2209.
- 9 (a) H. Stolzenberg and W.P. Fehlhammer, J. Organomet. Chem., 235 (1982) C7; (b) L. Busetto, A. Palazzi and M. Monari, J. Chem. Soc., Dalton Trans., (1982) 1631; (c) L. Busetto, M. Monari, A. Palazzi, V. Albano and F. Demartin, J. Chem. Soc., Dalton Trans., (1983) 1849.
- (a) T. Bodnar, E. Coman, K. Menard and A. Cutler, Inorg. Chem., 21 (1982) 1275; (b) T. Forschner,
 K. Menard and A. Cutler, J. Chem. Soc., Chem. Commun., (1984) 121; (c) M.E. Giuseppetti and A.R. Cutler, Organometallics. 6 (1987) 970.
- 11 (a) G.R. Lee and N.J. Cooper, Organometallics, 4 (1985) 794; (b) G.R. Lee and N.J. Cooper, Organometallics, 4 (1985) 1467.
- 12 Gibson recently reported that the more electron-rich metallocarboxylate Cp(PPh₃)(CO)FeCO₂⁻ K⁺, which is available from the pH-dependent hydrolysis of carbonyl salt Cp(PPh₃)Fe(CO)₂⁺, undergoes methylation (Mel or MeOSO₂CF₃) and gives the metalloester Cp(PPh₃)Fe(CO)FeCO₂CH₃. Gladysz similarly noted that Cp(PPh₃)(NO)ReCO₂ Li⁺ affords tin- or germanium-containing metalloesters Cp(PPh₃)(NO)ReC(0)OMPh₃. The only other example of alkylating a metallocarboxylate is Herskovitz's early communication on methylating (PMe₂CH₂CH₂PMe₂)₂IrCO₂ with MeOSO₂F: (a) D.H. Gibson and T.-S. Ong, J. Am. Chem. Soc., 109 (1987) 7191; (b) D.R. Senn, K. Emerson, R.D. Larsen and J.A. Gladysz, Inorg. Chem., 26 (1987) 2737; (c) R.L. Harlow, J.B. Kinney and T. Herskovitz, J. Chem. Soc., Chem. Commun., (1980) 813.
- (a) E. Fujita, D.J. Szalda, C. Creutz and N. Sutin, J. Am. Chem. Soc., 110 (1988) 4870; (b) C.C. Tso and A.R. Cutler, J. Am. Chem. Soc., 108 (1986) 6069; (c) A. Doehring, P.W. Jolly, C. Krueger and M.J. Romao, Z. Naturforsch. B, 40 (1985) 484; (d) J.D. Audett, T.J. Collins, B.D. Santarsiero and G.H. Spies, J. Am. Chem. Soc., 104 (1982) 7352; (e) A number of trinuclear cluster systems with ligated CO₂ also have been characterized: E.G. Lundquist, J.C. Huffman and K.G. Caulton, J. Am. Chem. Soc., 108 (1986) 8309; K. Raab and W. Beck, Chem. Ber., 118 (1985) 3830; G.R. John, B.F.G. Johnson, J. Lewis and K.C. Wong, J. Organomet. Chem., 169 (1979) C23.
- 14 W. Beck and K. Sunkel, Chem. Rev., 88 (1988) 1405.
- 15 D.F. Shriver and M.A. Drezdzon, The Manipulation of Air-Sensitive Compounds: 2nd edit., Wiley-Interscience, New York, 1986.
- 16 R.B. King, Organometallic Syntheses, Vol. 1, Academic Press, New York, 1965.
- 17 M.J. Mays and J.D. Robb, J. Chem. Soc. A, (1986) 329.
- 18 J.A. Gładysz, G.M. Williams, W. Tam, D.L. Johnson, D.W. Parker and J.C. Selover, Inorg. Chem., 18 (1979) 553.
- 19 (a) D. Catheline and D. Astruc, J. Organomet. Chem., 272 (1984) 417; (b) A.B. Todaro, A.R. Cutler, and J.J. Benoit, manuscript submitted.
- 20 D.A. Brown, H.J. Lyons, A.R. Manning and J.M. Rowley, Inorg. Chim. Acta, 3 (1969) 346; D.A. Brown, H.J. Lyons and A.R. Manning, ibid., 4 (1970) 428; R.J. Haines, A.L. DuPreez and L.L. Marais, J. Organomet, Chem., 28 (1971) 405.

- 21 P.M. Treichel, R.L. Shubkin, K.W. Barnett and D. Reichard, Inorg. Chem., 5 (1966) 1177.
- 22 M.B. Humphrey, W.M. Lamanna and M. Brookhart, Inorg. Chem., 22 (1983) 3355; K.-H. Griessmann, A. Stasunik, W. Angerer and W. Malisch, J. Organomet. Chem., 303 (1986) C29; M. Appel, K. Schloter, J. Heidrich and W. Beck, ibid., 322 (1987) 77.
- 23 J.M. Burlitch and A. Ferrari, Inorg. Chem., 9 (1970) 563, and ref. cited therein.
- 24 (a) R.J. Haines and A.L. DuPreez, Inorg. Chem., 8 (1969) 1459; F.A. Cotton, L. Kruczynski and A.J. White, ibid., 13 (1974) 1402; F.A. Cotton, B.A. Frenz and A.J. White, ibid., 13 (1974) 1407; (b) A.J. White, J. Organomet. Chem., 168 (1979) 197.
- 25 S.B. Fergusson, L.J. Sanderson, T.A. Shackleton and M.C. Baird, Inorg. Chim. Acta, 83 (1984) L45.
- 26 E. Breitmaier and W. Voelter, ¹³C NMR Spectroscopy; 2nd edit., Verlag Chemie, New York, 1978; p. 181.
- 27 (a) Complex 6 bearing a five member FeC_2S_2 ring results from the condensation of FpC(S)SFp (3) and $FpCS^+$, followed by cleavage of the thione-coordinated Fp^+ with NaI in refluxing acetone. ¹³C NMR spectral data is available for 6 (but not for 7). We inverted Busetto's assignments [27b] for the FeC_2S_3 ring, δ 279.2 and 329.5, in order to retain internal consistency with the data in Table 1. The thione carbons in $FpC(S)SCH_2Ph$ and in 6 thus appear at δ 287.6 and 279.5, respectively; (b) L. Busetto, V. Zanotti, V.G. Albano, D. Braga and M. Monari, J. Chem. Soc., Dalton Trans., (1987) 1133.
- 28 C.C. Tso and A.R. Cutler, Organometallics, 4 (1985) 1242.
- 29 Fp(methyl ester) and Fp(acetate) complexes exhibit moderately intense ester and acetate IR ν(CO) absorptions appear at 1647 and 1617 cm⁻¹, respectively. For comparison, the binuclear μ(η¹-C: η¹-C') ketene complex FpCH₂C(O)Fp (13) [30] exhibits its C₂-ligand carbonyl ν(CO) at 1612 cm⁻¹ (CH₂Cl₂, vs. similar absorptions at 1647 cm⁻¹ for FpCOCH₃ and at 1658 cm⁻¹ for FpCH₂C(O)CH₃ [31]. The two electron-rich iron centers on FpCH₂COFp evidently reinforce one another in diminishing the organic carbonyl bond order.
- 30 (a) M. Akita, A. Kondoh, K. Takashi, Y. Moro-Oka, J. Organomet. Chem., 299 (1986) 369; (b) M. Akita, A. Kondoh and Y. Moro-oka, J. Chem. Soc., Chem. Commun., (1986) 1296; M. Akita, A. Kondoh, T. Kawahara, T. Takagi and Y. Moro-oka, Organometallics, 7 (1988) 366.
- 31 J.K.P. Ariyaratne and M.L.H. Green, J. Chem. Soc., (1964) 1.
- 32 (a) D.L. Reger and C. Coleman, J. Organomet. Chem., 131 (1977) 153; (b) E.K.G. Schmidt and C.H. Thiel, ibid., 220 (1981) 87; (c) M. Rosenblum and D. Scheck, Organometallics, 1 (1982) 397; (d) N. Kuhn and H. Schumann, J. Organomet. Chem., 276 (1984) 55; 304 (1986) 181; H. Schumann, ibid., 299 (1986) 169; (e) H. Schumann, J. Organomet. Chem., 293 (1985) 75.
- 33 J. Wang, M. Sabat, C.P. Horwitz and D.F. Shriver, Inorg. Chem., 27 (1988) 552.
- 34 J.P. Blaha and M.S. Wrighton, J. Am. Chem. Soc., 107 (1985) 2694; A.S. Goldman and D.R. Tyler, Inorg. Chem., 26 (1987) 253; M.J. Therien and W.C. Trogler, J. Am. Chem. Soc., 109 (1987) 5127; J. Morrow, D.L. Catheline, M.-H. Desbois, J.-M. Manriquez, J. Ruiz and D. Astruc, Organometallics, 6 (1987) 2605.
- 35 P.L. Bogdan, A. Wong and J.D. Atwood, J. Organomet. Chem., 229 (1982) 185; B.D. Fabian and J.A. Labinger, Organometallics, 2 (1983) 659; J.A. Armstead, D.J. Cox and R. Davis, J. Organomet. Chem., 263 (1982) 213; N.J. Coville, E.A. Darling, A.W. Hearn and P. Johnston, ibid., 328 (1987) 375.
- 36 J.A. Labinger and S. Madhaven, J. Organomet. Chem., 134 (1977) 381.
- 37 H. Werner, J. Roll, R. Zolk, P. Thometzek, K. Linse and M. Ziegler, Chem. Ber., 120 (1987) 1553.
- 38 K. Brinkman and P. Helquist, Tetrahedron Lett., (1985) 26.
- 39 A related (η^2 -O,O') acetylacetonate chelate (η^5 -C₅Me₅)(CO)FeOC(CH₃)CHC(CH₃)O has been characterized; E.E. Bunel, L. Valle and J.M. Manriquez, Organometallics, 4 (1985) 1680.
- 40 F.B. McCormick and R.J. Angelici, Inorg. Chem., 20 (1981) 111; data in CD₃CN.